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Temperature distributions, heat fluxes, and Nusselt numbers at the
walls have been obtained for the case of laminar flow of a liquid in a
rectangular channel for various laws of internal heat release,

In reference {2], for the case of laminar flow of
an incompressible liquid in an infinite rectangular
channel, the temperature distribution in the liquid
and the heat flux through the wall were obtained with
energy dissipation under constant channel wall tem- |
perature.

The present paper examines laminar flow of an
imcompressible liquid in an infinite channel of rec-
tangular cross section with arbitrary ratio of sides,
with internal heat release in the liquid, described
by relations of a different type. The basic assump-
tions are the same as in reference [2]: steady flow
of the liquid is considered with constant physical
properties, and the effect of gravity is not taken into
account. The wall temperature is assumed constant
and the same for all the channel walls.

Under the above assumptions, the differential
equation of energy may be written in the following
form [1]:
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The boundary conditions are
x=0; x=ga;, =1y
y=0; y=0b, t=t,. (2)

The heat release Q(x,y) in the liquid is assumed
to be representable in the form of a product of func-
tions of the coordinates

Q& y) =0 x-9(y.

A solution was obtained, following transition in (1)
and (2) to the new variables

X
X =-"m,

T =t—t 3)
a w ¢

= =,
by use of a finite integral Fourier sine-transforma-
tion with respect to the variable X [4]. Quite a de-
tailed similar solution has been examined in refer-
ence [2], and therefore we give here only the final
results for the temperature fields over the channel
section and for the heat fluxes at the walls.

The following cases of internal heat release in the
liquid are examined:

Q (x, y) = Q, = const; )

Q(x, y) = Qpsin 2= ; (5)
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(7)

The final expressions for the temperature field
over the channel cross section and for the heat fluxes
at the walls have the following form.

For the case Q(x,y) = Q, = const
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For the case Q(x,y) = Q; sin (xvr/a) =Q, sin X
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For the case Q(x,y) = Q3 sin (xr/a) sin (yr/b) =
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For the case Q(x,y)

] snkX:  (14)

Determination of Nusselt number at the walls was
carried out as follows [3]:
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where
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and the expression for W,, obtained in reference [2],
has the form
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Since the expressions for W, and for T are in general
infinite series, several terms were used for the cal-
culations, depending on the rate of convergence of
the corresponding series. The terms of the series
decrease quite rapidly. For example, for each of the
series described by (8) and (14) for X = /2, the val-
ues of the third terms are less than 0. 01 of the val-
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where expressions (8) and (17) were used for T and
W, it was sufficient to take a single term of each of
the series (with k = p = 1), since after integration the
value of the second term of the final expression was
.less than 0. 002 of the value of the first term.
The results of the computations are shown in Figs.
1 and 2. All the computations were performed for the
same values of internal heat release per unit channel
length, i.e., with
Qz =

T 2 2
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Figure 1a shows curves of temperature distribu-
tion in dimensionless form T/(a2Q,/A), obtained ac-
cording to the formulas given above. Curve 5 was
constructed for the case of heat release in the liquid
with the law Q(x,¥) = Qs (1 — sin (x7/a)) = Q5 (1 — sin X),
and was obtained by combining solutions of Eq. (1)
with Qx, y) = Q and Q(x, y) = Q ;sin X. Here,

T
Qs = =9 Ql -

It may be seen from Fig. 1a that the most uniform
temperature field across the section with a symmet-
rical distribution of heat sources relative to the mean
plane of the channel occurs when the maxima of heat
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release are displaced as close as possible to the
walls, and, conversely, the most nonuniform temper-
ature field with the greatest heating of the liquid rel-
ative to the wall is obtained for heat release maxima
close to the channel axis. The heating of the liquid at
the center of the channel, with a heat release distribu-
tion according to the law Q = Qs (1 — sin X), is ap-
proximately four times less than with a heat release
law Q = Q; sin X sin ¥, and less by a factor of ap-
proximately three than for a heat release law Q =

= @ sin X under the same heat release per unit chan-
nel length in all cases.

With an asymmetrical heat release, the temper-
ature field also remains asymmetrical (curve 4), and
a corresponding redistribution of-heat fluxes at the
walls takes place.

Figure 1b shows curves of temperature distribution
in the mean plane X = 1/2 of the channel with ratio of
sides b/a = 2. The general picture shows almost no
change from that of ¥Fig. 1. The minimum temperature
of the channel axis—for heat release law Q = Q5(1 —

— sin X)—is also less by a factor of approximately 4
than for a heat release law Q = Q3 sin X sin Y. It is
interesting that the temperature distribution for a

heat release law Q = Q coincides with the temperature
distribution for a heat release law Q = Q, (curves 1 and
4), The heat fluxes at the walls for X = /2 are quite
considerably different from those with Y = n/2.

The distribution of Nusselt number at the walls for
a channel of square section, as obtained by formula
(16), is shown in Fig. 2. Since only q is a function of
X and Y in formula (186), the curves in Fig. 2 describe
the distribution of heat flux at the walls in the appro-
priate scale. )

NOTATION

Vg is the stream velocity; X, y are the coordinates
perpendicular to the stream direction; Q(x,y) is the
internal heat release; A is the thermal conductivity
of the liquid; t is the temperature; a,b are width and
height of the channel; ¢ is the specific heat flux at
the wall; deq is the equivalent diameter; a is the a
constant; F, U are the area and perimeter of the
channel; t, is the wall temperature; TZ is the mean
enthalpy temperature of the liquid. :
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Fig. 1. Temperature distribution in the mean plane
Y = 7/2 of a channel of square section (a), and in the
mean plane (X = 1/2) of a channel with ratio of sides
b/a = 2 (b): 1-forQ = Qq; 2—Q = Q(r/2) sin X; 3—
Q = Q4(r%/4) sinX-sinY; 4—Q = Q,(2A4)X; 5—Q =

= QqIn/(r = 2)](1 - sin X); B =T/(a2Q,/M.
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Fig. 2. Nusselt number distribution for a square sec~

tion channel: a — at the wall (X = 0) with Q = Q, (1),

Q=Q;(r/2) sin X (2) and Q = Q, (r?/2) sin X sin Y (3);

b — at the wall (Y = 0) with Q =Q {r/2) sin X (1) and
Q = Q, (2/7) X (2),
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